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Abstract Crafting a zero-mean Gaussian noise numerical experiment, we examine the re-
lationship between the temporal-spatio resolution of any given instrument and
the impact that resolution window has on the propagation of error associated
with the computation of sea-ice position, velocity, and deformation. These re-
sults are characterized through a fitted curve model describing agreement be-
tween two data sets (a pure signal and a noise corrupted signal) as a function of
time sampling and spatial uncertainty. Using two example instruments (SAR and
SSM/I), we demonstrate how this method can be applied to a variety of instru-
ments to estimate the precision of motion vector products given an instrument’s
chosen temporal and spatial resolution. Relevance to future satellite designs and
preprocessing of current data sets is also discussed.

1. Introduction
The displacement of a single sea-ice feature over a period of time describes the drift or ve-
locity of that feature. Mathematically, this is expressed in indicial form as ���������	��
��� for� ������������������� dimensions, where �	� are components of position, ����� the corresponding dis-
placements, and �� is a chosen time interval. To describe the local drift of a region, velocities
from individual features are statistically combined at a suitable spatial scale. Deviations of indi-
vidual velocities from regional drift indicate spatial variability or local deformation of the field
using terms like � ����
 � ��� for

� ��� �������������!����� dimensions. These values are computed from
chosen spatial scales and at time scales propagated from the individual velocities. Hence, any
local field description of drift or deformation depends on both temporal and spatial scales.

In the literature, works by Hibler et al. [1974], Thorndike [1986], Massom [1992], Geiger et
al. [1998], Moritz et al. [1999], Padman and Kottmeier [2000], and others have estimated a va-
riety of drift and deformation values using in situ buoy trajectories in both Arctic and Antarctic
regions. Due to instrumental limitations on the order of 100 to 500 m and specific geophysical
interests, most of these studies are designed to resolve features with time scales of a half-day or
longer and spatial scales at least the size of the buoy array.

With the recent development of cross-correlation techniques [Fily and Rothrock, 1987; Kwok
et al., 1998; Maslanik et al., 1998; Li et al., 1998] and a 2D wavelet method by Liu et al. [1998],
sea-ice velocity and deformation are computed from data acquired by remote sensing platforms
equipped with microwave radiometers (e.g. SSM/I), Synthetic Aperture Radar (e.g. SAR on
ERS-1 and RADARSAT), scatterometers (e.g. Seawinds on QuickSCAT), and others. The tex-
ture of these images is resolved into features which can be anything from individual floes to
clustered aggregates whose size depends on the resolution of the specific remote sensing plat-
form.
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Maslanik et al. [1998] compare a number of different tracking methods and show a wide
range of agreement between SSM/I-derived motion vectors and buoy drift. In that report, a
lower limit RMSE (root mean square error) of 2.8 cm s �! was found between SSM/I and buoy
velocity using a 2D wavelet method and a 4-day sliding window [Liu et al., 1998]. Errors
increased considerably when time steps were reduced with some of the largest errors seen from
1-day displacements in dynamically active regions (e.g. standard deviation for velocity of 6.9
cm s �! in the Weddell Sea [Kwok et al., 1998]). In each of these studies satellite-derived
motion vectors at 100 km and 200 km grid spacing were compared to point source (buoy)
motion vectors.

A study by Geiger et al. [2000] improved on these results through the determination of local
drift and deformation. Using a collection of sparse gridded motion vectors (from both buoys
and satellite products) a spatial scale commensurate with the local dominant forcing was found
using a vector RMSE minimization of spatial variability terms ( � � ��
 � ��� ) between buoy and
satellite-derived results. As an example, a 600 km 8-buoy array in the Eurasian basin was
compared with SSM/I motion vectors at 100 km grid spacing yielding an RMSE of 1.83 cm
s �! , 31.0 " , 2.47 # �%$ �'& s �! , and 4.56 # �%$ �'& s �! for speed, direction, divergence and shear,
respectively. These results were found using a 4-day sliding window and 1000 km spatial scale
which matched the temporal and spatial scales of atmospheric storms, respectively.

There are three fundamental difficulties in comparing all of the above methods and results.
First, the studies span a considerable range of time scales (anywhere from daily to 7-day sliding
or averaging windows). Second, the resolution of the spatial properties of geophysical features
is dependent on the chosen temporal scale (e.g. one cannot resolve the spatial variations caused
by a 5-day storm with a 7-day time interval even when very high 10 m spatial resolution images
are available). Third, while the use of RMSE and standard deviation is meaningful in comparing
results at one particular scale, their values vary depending on the magnitude of the property
examined. This is particularly true when comparing deformation results which have a much
greater range of magnitude than velocity, are highly dependent on local dynamics (tides, storms,
strong local ocean currents), and therefore are more sensitive to temporal-spatio scales than
velocity.

In this paper, we address some of these temporal-spatio scaling issues via a numerical ex-
periment using random Gaussian noise to demonstrate the propagation of errors. We quantify
our ability to compare two data sets as a function of time interval and spatial uncertainty, then
discuss and summarize these findings.

2. Methodology
A differential method for computing local sea-ice drift and deformation through statistical
means using multiple linear regression is well described in the literature [Hibler et al., 1974;
Geiger et al., 1998; Geiger et al., 2000]. We review this method here and further identify the
statistics used in evaluating the data sets chosen for this study. While other methods exist which
may be more accurate (e.g. integral methods), we have found from earlier works [Hibler et al.,
1974; Geiger et al., 2000] that the errors associated with instrumental position uncertainty for
sea ice are many times greater than those associated with numerical round-off and truncation
errors. Therefore, we make use of the statistical strength of this method to unravel an important
data sampling issue.

2.1 LOCAL DRIFT AND DEFORMATION

In-situ buoy arrays are typically sparse in number but capable of providing reasonable deter-
ministic results of local drift and deformation when computed in groups of three and can pro-
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vide statistically reasonable estimates when clustered in groups of 6 or more [Thorndike, 1986;
Geiger et al., 2000]. Using multiple linear regression [e.g. Geiger et al., 1998; Hines and Mont-
gomery, 1990], we solve for the unknowns of local velocity 	 � ��
� and associated local deriva-
tives 	����������� 
� given known particle velocities 	 � ��
� and their distance from a chosen local point
� 	 � ��
� � 	 � ��
��� 	 � ��
� based on the Taylor expansion of velocity about a local point of
interest 	 � ��
� such that

	 ��� 
 � � 	 ��� 
 ����� � � �
� ���! � 	 � ��� 
 � � �� � �#" � �

� ��� � �%$# � 	 � ��� � � $ 
 � � ����� (0.1)

where repeated indices sum;
� ������& � ������� ���!� dimensions; ' � ���������!��� is indexing known

particles; and the index 0 identifies the local point of interest from which 	 � ��
� are measured.
Speed, direction, and strain-rate invariants of divergence and maximum shear follow from this
solution [Geiger et al., 2000].

2.2 STATISTICS

There are a number of statistics that can be applied to a multiple linear regression solution to
Eq. (0.1) as shown in Geiger et al. [1998, 2000]. In this study, we focus on two of these. First,
we choose the RMSE between two data sets as it is the standard often seen in satellite-derived
motion product comparisons, providing a means of comparing results from different studies.
For clarity, we define RMSE as( �*),+ �.- �/10 $ 0 �32 )54  �6� $ � )54 "76� $98 " (0.2)

where ' � � for the RMSE between scalar quantities of two data sets ( ) 	 � 
 and ) 	 � 
 ) indexed
in time by & of length

/
and ';: � to index between multiple components of two data sets

(velocity vector ' � ����� ; first order derivatives ' � ��������<���= [Geiger et al., 2000]).
One difficulty with RMSE is that it is derived from the square of the difference of two values,

and hence large differences (outliers) have greater weight in the result. A similar amplification
of outliers occurs in correlation calculations where there is the added loss of mean information,
leaving room for unaccounted errors. Therefore, the second statistical measure we choose is the
index of agreement ( > ) [Willmott et al., 1985] which was developed as a practical alternative to
correlation because it scales with the magnitude of the variables, retains mean information, and
does not amplify outliers. The formulation for the index of agreement is

>@? � � �BADC0 $�E  GF $IH�J> $KH ?ML 
 ADC0 $�E  GF $ONPH JQ%$ �SR JTUHP�;H JTM$ �VR JTUH W ? L (0.3)

where
/

is the number of data points observed ( JT�$ ) and predicted 	 JQ%$ 
 for either scalar or
vector quantities, J> $ � JQ%$ � JT�$ is the difference between predicted and observed, R JT �X C$�E  F $ JTM$�
 X C$PE  F $ is the mean of the observed, F $ are weight functions, and Y is the
order of the index (1=linear, 2=quadratic, etc). According to Willmott (personal communica-
tion), the linear form ( Y � � ) is the most robust for comparing results because of its linear
approach to a perfect match. In this study, all the data are the same type and there is no re-
dundancy information to gather repeat statistics. We therefore assume the data to be equally
weighted and assign F $ � � .
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3. Experimental Design
We consider two buoy arrays, one is the 6-buoy array from the Ice Station Weddell (ISW)
experiment in 1992 from day 65 to 150 located in the perennial ice pack of the western Weddell
Sea at the beginning of Austral autumn when the sea ice is expanding [Drinkwater, 1998a].
The array is located at the shelf break in a strong tidal area [Geiger et al., 1998; Padman and
Kottmeier, 2000; Foldvik et al., 1990]. Secondly, we consider the 6-buoy array from the Winter
Weddell Gyre Study in 1992 (WWGS) [Lemke, 1994; Drinkwater, 1998b] which is located
in the seasonal ice zone of the deep basin of the eastern Weddell Sea from day 193 to 335
during Austral Winter through Spring when the sea ice begins to retreat. These two arrays are
chosen because they encompass many of the seasonal and regional variations of the Weddell
Sea (Figure 1).

60S

60W

30W

ISW

WWGS

Figure 1. The Weddell Sea region is shown on the SSM/I grid projection. For reference 30 " W
and 60 " W longitude and latitude at 5 " intervals are shown. Buoy trajectories from ISW and
WWGS experiments from 1992 are superimposed.

For each buoy, we take the hourly linearly interpolated positions (latitude, longitude) and
project them onto a polar stereographic SSM/I grid whose � axis is parallel to the 0 " merid-
ian. We smooth the position signal using a 9 hour Butterworth 4-pole low-pass filter to mini-
mize the influence of instrument noise [Geiger et al., 1998] while still retaining, for example,
most of the strong tidal signal in the ISW buoys. Next we compute velocity using a sliding
time window such that � 	  
 � 	 � 	  � �� 
�� 
�� � 	  � �  
�� 
7
 
��� for each hourly reading in
each of the 6 buoys in both arrays. For this experiment we choose 6 different time intervals�  � [1/24,12/24,1,2,4,10] days, such that we create 6 different velocity time series from the
same buoy, each of which has an incrementally smaller amount of high frequency temporal vari-
ability (i.e. box car or sliding window filter). We further compute the local drift and deformation
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at each time relative to the centroid of each array using the multiple linear regression method
referenced earlier. We call all of these results original signals.

From earlier findings [e.g. Geiger et al., 2000], we know that the primary source of spatial
noise is position error of GPS and ARGOS buoys and temporal-spatio resolution and temporal
revisit limitations of remote sensing instruments in the polar regions. To simulate these uncer-
tainties, we make a copy of the original signals’ � , � positions. Next, we add random zero-mean
Gaussian noise to the copies of � , � positions. To ensure as close to true randomness as possi-
ble, we first generate a random seed which is then used to generate the random Gaussian using
a standard software random number generator. We multiply each random value by a constant
to attain whatever noise level we wish to introduce. In this experiment, we create 46 different
noisy signals for each buoy ranging from 10 m to 1000 km including 9 intervals at each base 10
such that we have noise levels [km] of [0.01,0.02,0.03,...,0.1,0.2,0.3,...,1.0,2.0,3.0,...,1000.0]).
In other words, each buoy in case 1 has a random Gaussian noise level of 10 m added, case 2
of 20 m, ... case 46 of 1000 km. The range of noise is chosen to reflect the range of resolutions
from SAR (10-100 m), GPS/ARGOS (10-500 m), and SSM/I (12.5 km for 85 GHz and 25 km
for 37 GHz).

We compute velocity from the noisy � , � positions using the same sliding window method
described earlier at the six �� displacement window ranges and further compute local drift and
deformation of the two arrays. In this way, we propagate position uncertainty through both
the temporal computation of velocity and the temporal-spatio computation of deformation (e.g.����
�� � ). Including the original signal which has no noise relative to itself, we generate a total
of 47 different spatial noise levels relative to an original signal at 6 different time sampling
intervals using 2 buoy arrays from distinct regions of the Weddell Sea. We use these results to
examine the relationship between temporal and spatial resolution in the determination of sea-ice
drift and deformation.

4. Experimental Results
Three sets of scatter plots are used to highlight the results found. The first is the example shown
in Figure 2 (a-d), constructed from the WWGS buoy array from day 193 to 335 using a one day
sliding time window and spatial noise of 50 m. Using the index of agreement > as a guide, we
notice that speed (Figure 2a) and direction (Figure 2b) show nearly perfect agreement (99.8%
and 99.9%, respectively) with very good agreement for divergence and shear (97.9% and 98.6%,
respectively).

Next we see in Figure 2(e-h) what happens as we increase the spatial noise (spatial uncer-
tainty equivalent) from 50 m to 900 m. Notice, while the velocity results degrade only slightly
(down to 96.6% and 98.3%, respectively), divergence and shear now only moderately agree
(67.4% ad 76.3%, respectively). By experimental design, the degradation of agreement from
velocity to strain-rate invariants can only be attributed to the propagation of error which is am-
plified as it proceeds from position (noise introduction), to velocity computation, to first-order
derivatives of velocity (deformation).

The third example shown in Figure 2(i-l), illustrates what happens when the noise is in-
creased from 900 m to 3 km. While we again see a small reduction in velocity agreement (down
from 96.6% to 88.8% for speed and from 98.3% to 94.7% for direction) there is a big change in
both the scatter pattern and agreement of the strain-rate invariants (down from 67.4% to 35.0%
for divergence and from 76.3% to 39.4% for shear). This third example elucidates how much
more sensitive deformation properties are to increasing instrumental uncertainties.

To summarize these results more comprehensively, we construct plots of agreement 	 > 
 from
all 47 noise levels at each time interval (Figure 3) with ISW results are shown in top panels and
WWGS in bottom panels. Grey vertical bars are used to approximate the noise equivalent of
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Figure 2. Example results using the WWGS buoy array and a one day time displacement to
compute velocity. The abscissa values are properties of speed (cm s �  ), direction (degrees),
divergence ( # �%$ & s �! ), and shear ( # �%$ & s �! ) derived from the original signal. The ordinate
values are computed from the original � , � positions perturbed with zero-mean Gaussian noise
levels of 50 m (a-d), 900 m (e-h), and 3000 m (i-l).

SAR-derived and SSM/I-derived motion product resolution (as rough estimates 100 m and 20
km chosen, respectively). Using the grey bars as examples, we see that an instrument with a
spatial resolution of the order of ERS-1 SAR (leftmost bars) should agree well against a perfect
result ( : ����� for velocity and :�� $ � for divergence and shear with very low error propagation
for all but the shortest time intervals ( � �� � day).

For SSM/I (rightmost bars), the potential for error propagation is much greater due to the
increased spatial uncertainty which infiltrates position estimates as noise thereby increasing the
amount of error propagated to velocity and associated derivatives. This is seen in Figure 3 by the
shift to the left of divergence and shear agreement relative to speed agreement. In the study by
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Figure 3. The linear index of agreement (ordinate axis) is plotted for the invariant properties
of speed (a,d), divergence (b,e), and maximum shear (c,f) using the buoy arrays from ISW (top
panels) and WWGS (bottom panels). The abscissa is the magnitude of the zero-mean Gaussian
noise added to the position information. Each curve is characterized by its time displacement,
namely one hour (solid), half day (dot), one day (short dash), two days (dot-dash), four days
(dot-dot-dot-dash), and ten days (long-dash). The vertical shaded bars denote the approximate
resolution (i.e. position uncertainty) of SAR ( ������� m) and SSM/I ( ����� km).

Geiger et al. [2000], a dependence on the number of particles was found to significantly impact
the signal-to-noise ratio in strain-rate determination, and so we suspect that the two examples
shown here using 6 buoys serve as a lower limit estimate with better results possible through
the incorporation of more particles.

All the lines in Figure 3 have a similar shape allowing us to mathematically model agreement
as a function of time interval and spatial noise. We fit these curves with the function

> � 	

�5� 	 ��
 � ��
�
 (0.4)

where > is the index of agreement;
	

is the maximum amplitude (100%); � is the noise level;Q � ��
�� ' 	� 
 ; and  is the steepness or slope of the curve near the midpoint � � where >!	 � ��
 �
� $ � . The slope  is estimated as an average using values between > � 75% and 25%. Averages
for slope  (Table 1) are found out of a possible range from 0 (totally vertical) to � (totally
horizontal). Visually, we see from Figure 3 that all these curves have similar steepness and their
standard deviations are small (Table 1). Hence we estimate an overall average of ��

�
for this

experiment.
Using the individual averages for  shown in Table 1 there remains only one unknown � �

which we solve for using Eq (0.4) and >!	 � � 
 � � $ � . Since agreement drops with increased
noise, �!� can be thought of as the 50% noise tolerance level. While steepness  has a fairly
constant value in all cases examined ( ��

�
), we note that �%� (Table 2) increases at a systematic

rate for velocity by a factor of � � between hourly and semi-diurnal time steps, and a doubling
in noise thereafter corresponding roughly to each doubling in time intervals (0.5,1, 2, 4, and
10 days). This result is anticipated since individual velocities are linearly dependent on ��
(i.e. ��� � � �	��
��� ) and local velocity is based on multiple linear regression, also a linear
propagation of time difference.
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Slopes (  ) of Fitted Curves using Eq. (0.4)

ISW WWGS
VM DV MS VM DV MS

mean 3.77 5.69 4.07 5.14 6.90 4.41
s.d. 0.23 0.26 0.39 0.05 1.03 0.41

VM, DV, and MS are abbreviations for the invariants of velocity magnitude (i.e. speed), divergence and
maximum shear, respectively. Standard deviation is denoted by the abbreviation s.d.����������

Noise Levels ( � � [km]) of 50% Agreement from Eq. (0.4)
���

ISW WWGS
(days) VM DV MS VM DV MS

1/24 0.65 0.17 0.05 0.82 0.14 0.15
12/24 7.04 1.04 0.36 8.68 1.79 1.25

1 14.35 1.37 0.55 16.22 1.98 2.44
2 27.60 2.09 0.94 27.80 3.65 3.83
4 51.77 2.81 1.50 45.25 7.31 7.43

10 107.60 4.46 3.00 77.66 8.62 9.23

Figure 3 and Table 2 also show how strain-rate invariants are more sensitive than velocity
in two distinct ways. First, as seen in Figure 3, much lower noise levels are necessary to reach
tolerable levels of agreement. Comparing 50% noise tolerance �#� values on the same row in
Table 2, we note that strain-rates reach 50% agreement at noise levels which are anywhere from
4 to 40 times as small as velocity. Secondly, comparing � � values in the same column, we
see how much slower strain-rate invariants reach 50% agreement as time interval is increased.
Compared with the linearly varying velocity results, this result suggests a non-linear relationship
between temporal-spatio scaling and the quality of deformation results.

Compared to the WWGS buoy array, the index of agreement for the ISW buoy array (Figure
3) shows similar spatial and temporal sampling behavior for velocity with only slightly less
agreement as spatial noise is increased (i.e. less steepness, higher  value). A higher tolerance
for noise is found in the strain-rate invariants for the WWGS array than the ISW array by roughly
a factor of 2. There is no apparent pattern when comparing � � results between divergence and
shear which could be due to a number of issues. While �%� clearly depends on the time interval,
we suspect it is further dependent on the number of features/particles. The remaining differences
may be attributed to the scale and location of the features (e.g. storm systems versus tidal, deep
versus shallow water) but this requires a more extensive study than is possible here.

5. Discussion and Summary
Summarizing this experiment, we are able to quantify the propagation of noise through position,
local velocity, and deformation properties. We make use of these results to further character-
ize data set agreement as a function of time interval and spatial noise via a fitted curve model.
The steepness (  ) of this function relates to how quickly agreement deteriorates with increasing
spatial noise, which we find to be ��

�
for the Weddell Sea when considering both Austral au-

tumn and winter to spring conditions, varying geophysical regions and processes (tides, storms,
perennial versus seasonal pack ice, and others). The systematic increase in �%� with increas-
ing time interval additionally describes the deterioration of agreement with spatial noise but in
the form of a constant offset thus providing a mathematical link between temporal and spatial
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choices of scale at least for velocity. An overlay of spatial uncertainty for SAR and SSM/I
instruments via grey bars in Figure 3 further illustrates the impact of error propagation and its
dependence on spatial and temporal scales.

Numerical experiments and scaling arguments shown here reveal similar results to Geiger et
al. [2000] for the Arctic, namely that error propagation has a serious impact upon the quality of
deformation quantities. This is particularly true of satellite-derived deformation statistics. Using
the statistical method chosen here, we are able to keep track of these errors and, concurring
with Geiger et al. [2000], believe that Antarctic results can be further improved by increasing
the number of particles. Since it is spatial variability and associated deformation processes that
determine the compactness of sea ice, the propagation of these errors will continue through any
application of motion fields to mass balance calculations as they are highly dependent on spatial
variability estimates in determining ice growth. Thus errors should be carefully addressed and
great care applied to motion vector products in climate applications and process studies, for
example.

The relationship found here between index of agreement, time interval, and spatial uncer-
tainty, while a very useful quantitative measure, is probably regionally dependent and case spe-
cific such that little generalization can be made at this point about values of  and � � in Eq. (0.4)
based solely on this study. An extension of this model should include the impact of number of
particles and probably the scale of geophysical processes before the formulation is applied in
a more general way. In its current form Eq. (0.4) is a simple measure between temporal and
spatial scales versus potential data quality given instrument resolution. A useful application of
the fitted curve model could be its incorporation into satellite-derived motion product prepro-
cessing as a gauge for selecting appropriate temporal and spatial scales before applying them
to models or other studies. It may also serve as a useful tool in devising future polar satellite
deployment strategies in an effort to adequately resolve the processes of greatest concern to the
community at large.
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